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Human cytomegalovirus (HCMV) is a major cause of illness in immunocompromised individuals. 

The HCMV lytic cycle contributes to the clinical manifestations of infection. The lytic cycle occurs 

over approximately 96 h in diverse cell types and consists of viral DNA (vDNA) genome 

replication and temporally distinct expression of hundreds of viral proteins. Given its complexity, 

understanding this elaborate system can be facilitated by the introduction of mechanistic 

computational modeling of temporal relationships. Therefore, we developed a multiplicity of 

infection (MOI)-dependent mechanistic computational model that simulates vDNA kinetics and 

late lytic replication based on in-house experimental data. The predictive capabilities were 

established by comparison to post hoc experimental data. Computational analysis of 

combinatorial regulatory mechanisms suggests increasing rates of protein degradation in 

association with increasing vDNA levels. The model framework also allows expansion to account 

for additional mechanisms regulating the processes. Simulating vDNA kinetics and the late lytic 

cycle for a wide range of MOIs yielded several unique observations. These include the presence 

of saturation behavior at high MOIs, inefficient replication at low MOIs, and a precise range of 

MOIs in which virus is maximized within a cell type, being 0.382 to 0.688 IU per fibroblast. The 

predicted saturation kinetics at high MOIs are likely related to the physical limitations of cellular 

machinery, while inefficient replication at low MOIs may indicate a minimum input material 

required to facilitate infection. In summary, we have developed and demonstrated the utility of a 

data-driven and expandable computational model simulating lytic HCMV infection. 

 

SIGNIFICANCE 

The complex HCMV lytic replication cycle is associated with the clinical manifestations of HCMV 

infection. This work uses a novel computational modeling approach based on experimental data 

to study viral DNA replication, late HCMV protein expression, and infectious virus production. The 

results demonstrate dynamic relationships and predict a range of MOIs where HCMV replication 

is most favorable. Introduction of mechanistic modeling reveals new parameters and measurable 

events required to fully understand the complex interplay between viral and host processes. 

 



 

Ultimately, this quantitative understanding of relationships in vitro will lead to quicker development 

of new monitoring and prophylaxis strategies against HCMV.  
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Human cytomegalovirus (HCMV) is a betaherpesvirus with an estimated global seropositivity rate 

of approximately 83% [1]. HCMV is the leading cause of congenital birth defects [2, 3] and a 

major cause of morbidity and mortality in immunocompromised hosts, especially in hematopoietic 

stem cell or solid organ transplant patients [4, 5]. Primary infection with HCMV in 

immunocompetent patients results in a variety of manifestations ranging from asymptomatic 

infection to a mononucleosis-like syndrome [4]. CMV disease in immunosuppressed transplant 

patients is defined as CMV infection accompanied by clinical signs and symptoms, and can be 

broadly categorized into either end-organ CMV disease or CMV syndrome [6]. HCMV is known to 

have two distinct life cycles, lytic and latent. It is the lytic replication cycle that is associated with 

the clinical manifestations of CMV syndrome and disease [7].  

The HCMV lytic replication cycle has an approximately 96 h duration in vitro in fibroblasts 

that culminates in infectious virions and destruction of the infected cell [7]. Variability exists in 

length of replication between cell types and is influenced by factors such as mechanism of 

particle entry and timing of genome delivery to the host nucleus [8-11]. The lytic cycle is marked 

by viral DNA (vDNA) genome replication, the temporally variant expression of both viral RNAs 

[12] and viral proteins [13], and the production of new virus. There are over 700 translated open 

reading frames that have been identified as potential proteins contributing to the HCMV lytic 

replication cycle [14]. Given this vast number of proteins and the even larger number of 

permutations of potential protein interactions, the HCMV lytic replication cycle is an extremely 

complex process. 

Computational modeling of biological systems has been utilized extensively in many 

disciplines. For example, pharmacologists have employed computational models to describe the 

pharmacokinetic and pharmacodynamic properties of drugs for over 30 years [15-18]. Recently, 

computational modeling has been applied to study other biological topics such as cell cycle [19-

23], viral infections such as hepatitis C [24-26], and early events in HCMV infection [27] as well as 

HCMV replication in patient samples [28] and drug treatment [29]. Existing models of in vitro 

HCMV lytic replication only focus on the early time points after infection [27] or the ability of 



 

HCMV to alternate between lytic and latent replication cycles [30]. Currently, there are no models 

describing the events leading to production of infectious virions. 
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In this work, we have developed an empirical model of intracellular viral genome (i.e., 

vDNA) replication and then utilized the output from this model as input to drive a mechanistic 

computational model of the late viral protein temporal class expression and viral egress. Each of 

these models was developed based on experimental data obtained at several multiplicities of 

infection (MOIs) in fibroblasts and then compared to experimental data obtained post hoc for 

model validation. Using in vitro and in silco experiments, we have elucidated a range of MOIs 

where both vDNA and cell-free virus production are maximized in infected fibroblasts. Our studies 

predict a minimum MOI in fibroblasts, below which both replicated vDNA and cell-free virus are 

less than the initial input. Our studies also demonstrate saturation kinetics where the maximal 

capacity of cells has been reached. The resulting computational model provides a mechanistic 

framework on which to build out the many complex relationships, both intra- and intercellular, 

occurring during HCMV infection and to test complex hypotheses relating multivariate interactions 

in silico. 

 

RESULTS 

Inherent limits of efficient virus genome replication kinetics framed by upper and lower 

thresholds. 

HCMV replication occurs via a coordinated and temporal series of events all requiring 

vDNA. The degree of coordination between replication components has yet to be fully defined 

due to the exceptional complexity of the viral life cycle. To generate a predictive computational 

model focusing on late viral events, it was necessary to first generate an empirical model of vDNA 

synthesis using in-house HCMV vDNA experimental data sets to subsequently utilize as a driving 

input for a model of the late lytic replication cycle. vDNA synthesis begins as early as 24 hours 

post infection (hpi) in vitro which is influenced by cell type and mechanisms of virion entry [31]. To 

develop this empirical model of vDNA kinetics, we formulated a simple schematic of different 

vDNA species that exist during infection (Fig. 1A). This schematic includes input viral genomes 



termed vDNAin, which associates with the target cells. We postulate the existence of genome loss 

or degradation (characterized by the rate constant kd) due to both failure of some copies to reach 

the nucleus and consumption of the vDNA by semi-conservative replication to generate newly 

synthesized vDNA genome copies. Once vDNA synthesis is initiated, the concentration of 

replicated vDNA, vDNArep, will begin to increase over time irrespective of genome replication 

mechanisms (e.g., semi-conservative, rolling circle, homologous recombination, etc.). The sum of 

vDNAin and vDNArep is the total cell-associated vDNA (vDNAtot), which we can experimentally 

measure. For the purpose of this empirical model, we set free vDNAtot to be in excess compared 

to genomes packaged into particles destined to leave the infected cell [32-37]. To develop the 

empirical model, we experimentally quantified HCMV vDNAtot using different input MOIs (IU/cell) 

over 96 h (Fig. 1B). We infected confluent MRC-5 fibroblasts using recombinant HCMV from 

strain TB40/E expressing late protein pp28 in-frame with the fluorescent protein mCherry and IE2 

in-frame with a cleavable eGFP (IE2-2A-eGFP UL99-mCh). We used absolute genome standards 

for both HCMV and host cells allowing for comparison between conditions (Fig. 1B). We 

determined MOIs of 0.1, 0.5, and 5 IU/cell resulted in average viral genomes/cell at 2 hpi 

(vDNAin,0) of 3 ± 1, 13 ± 3, and 131 ± 70, respectively, in this experimental system (Fig. 1C). 

These data collected from varying times and inputs resulted in the empirical model of vDNAtot 

dynamics shown in Eq. 1-3 (see Methods). 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

The empirical model was fit to each MOI-dependent data independently and nonlinear 

regression to Eq. 1-3 was performed on the individual estimates to generate vDNAin,0-dependent 

parameters vDNArep,max, t50, and n (Fig. S1). We generated a conversion between MOI and input 

viral genomes (Fig. 1C), noting that the MOI measurement depends on the method used for 

titering viral concentrations and number of cells, while quantifying genomes is a universal 

standard [38]. This conversion ensures unit consistency between output (genomes/cell) and input 

parameters. Since correspondence between the model and data (Fig. 1D) was strong, we 

simulated vDNAtot dynamics for varying input vDNAin,0 (Fig. 1E). To test the predictive nature of 

our empirical model of vDNAtot, we repeated the experiment using two additional MOIs of 0.01 

and 0.23 IU/cell, which corresponded to vDNAin,0 of 0.2 ± 0.1 and 6 ± 2 genomes/cell, 

 



 

respectively. Model predictions showed good correspondence with the experimental data (Fig. 1E 

and 1F), corroborating the model. We also generated 3D plots of vDNAtot and vDNAtot/vDNAin,0 

vs. vDNAin,0 and time showing the dynamic relationships occurring during infection (Fig. 1G). 

Separating vDNAtot into its constituents, the change in the concentration for vDNAin was 

determined by MOI and the decay rate constant kd, while the dynamics of vDNArep were 

determined by the empirical model based on our experimental data (Fig. 1H). Our simulation 

predicts a maximum increase in vDNAtot of 2.6 logs occurring when vDNAin,0 is in the range of 3 to 

32 genomes/cell, representing MOIs of 0.1 to 1.2 IU/cell in primary fibroblasts using our infection 

conditions (Fig. 1G). Below this range, the model predicts limited vDNA synthesis; while above 

this range, we observe saturation kinetics. We hypothesize that this range is the result of intrinsic 

features of the host cells, namely the influence of entry and intrinsic antiviral responses at lower 

inputs [31, 39, 40] and potentially related to maximum metabolic or structural capacity of these 

cells to support replication at higher inputs [41-43]. 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

 

Formulation of a MOI-dependent mechanistic computational model of HCMV late lytic 

replication cycle and associated in-house experimental data. 

HCMV virion production involves both a nuclear phase and a cytoplasmic phase. Viral 

proteins participating in nuclear and cytoplasmic virion production were predominantly 

categorized as “temporal profile 5” (Tp5) class proteins by Weekes et al. [13]. Tp5 class proteins 

production was determined to depend on vDNAtot [13]. Using our empirical vDNAtot model as a 

driving input allowing for the estimation of vDNAtot at any time and vDNAin,0, we formulated a 

conceptional relationship (solid lines) and putative regulation mechanisms (dotted lines) for the 

nuclear and cytoplasmic phases using the nuclear and cytoplasmic proteins Tp51 and Tp52, 

respectively (Fig. 2A). 

We hypothesize that the level of Tp51 is dependent on vDNAtot and is influenced by rates 

of synthesis (ks,1) and degradation (kd,1) (Fig. 2A). For production of infectious virus, we postulate 

that vDNAtot must first associate with Tp51 class proteins (ks,C) eventually resulting in a capsid 

containing a single genome. To obtain an experimental baseline for our hypotheses, we 



 

measured a representative HCMV nuclear Tp51 class protein, pUL44 (52 kDa), using immunoblot 

analysis with a standard curve (Fig. 2B), completed in parallel with vDNAtot measurements (Fig. 

1B). The standard curve consists of dilutions of whole cell lysates following infection at 96 hpi and 

used in the quantification process for comparison between blots. These standards were used for 

each antibody and immunoblot allowing us to compare relative signal intensities between 

experiments (Fig. 2C). Our analysis resulted in the relative expression level of total Tp51 over 

time. Additionally, at each time point, our analysis resulted in Tp51 expression levels relative to 

each vDNAin,0 (Fig. 2D). We included the quantification by mass spectrometry for pUL44 levels by 

Weekes et al. [13] showing comparable expression kinetics at the highest MOI of 131 

genomes/cell (Fig. 2D). 
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The second phase of the lytic replication cycle involves the egress of vDNA-containing 

capsids into a cytoplasmic assembly compartment and associating with a second set of Tp5 

proteins, Tp52 (Fig. 2A). Similar to Tp51, we hypothesize that Tp52 is dependent on vDNAtot and is 

influenced by rates of synthesis (ks,2) and degradation (kd,2). For production of infectious virus, 

capsids associate with Tp52 class proteins (ks,P) eventually resulting in intracellular particles. We 

measured the total cellular levels of a representative HCMV cytoplasmic Tp52 protein, pp28 (28 

kDa pp28; 56 kDa pp28-mCherry) using immunoblot analysis and an antibody against pp28 (Fig. 

2E). Using a standard curve (Fig. 2F), we quantified the relative expression of Tp52 over time and 

in proportion to vDNAin,0 (Fig. 2G), and included the relative levels measured by Weekes et al. 

[13], again showing nearly identical expression kinetics at the highest MOIs. 

Productive viral replication results in the release of infectious, cell-free virus (Fig. 2A). To 

experimentally quantify this phenomenon, we measured viral titers starting at 24 hpi in culture 

media from HCMV infections at the average vDNAin,0 of 3 (MOI 0.1), 14 (MOI 0.5), and 131 (MOI 

5) genomes/cell (Fig. 2H). Titers of the time course media were determined by quantifying the 

resulting HCMV IE1-positive cells in a new culture and defining infectious units per ml (IU/ml). We 

observed titers at 24 hpi in proportion to inputs with similar fold increases for vDNAin,0 of 14 and 3 

genomes/cell by 96 hpi (Fig. 2H). In contrast, vDNAin,0 of 131 genomes/cell exhibited saturation 

kinetics with titers at 96 hpi comparable to vDNAin,0 of 14 genomes/cell which supports our 



 

previous observation that the culture has a maximal capacity. We observed relatively high levels 

of infectious virus present at 24 hpi (Fig. 2H), and we speculate that this is residual inoculum as it 

exhibited poor infectivity compared to the input stock and 72-96 hpi cell-free virus (Fig. 2I). Based 

on this information, we elected to use the resulting titers from time points between 48 and 96 hpi 

for subsequent modeling studies. 
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Identification of data-driven mechanistic computational model of HCMV late lytic 

replication cycle using an ODE framework and predictive outcomes of the model.  

Because of the complexity and inclusion of multiple biological processes within a simple 

computational model of late lytic replication cycle and the observation that several data points 

plateau late in infection suggesting additional regulations, we tested six competing models (see 

SI Appendix) which differed at the level of Tp51 and Tp52 regulation (Fig. 2A) to define the 

minimal model (Fig. 3A) that best describes the data. Using mass balance, we derived coupled, 

nonlinear ordinary differential equations (ODEs) describing changes in Tp51 and Tp52 classes of 

proteins and its complexes and virus production using the basic frameworks in Figs. S2-S7. We 

estimated unknown parameters of each model by fitting model solutions of the relevant state 

variables to total Tp51 and Tp52 data (Figs. 2D and 2G) and extracellular virus data (Fig. 2H) 

using a pseudo-Monte Carlo minimization parameter estimation protocol. Estimated parameter 

values for each of our models can be found in Figs S2C-S7C. Pseudo-Monte Carlo fits of each 

model to the data from Fig. 2 are shown in Figs. S8 and S9. For further analysis, we opted to use 

the average parameter sets (Fig. S9, dashed curves) since they were based on the average of 

200 pseudo-Monte Carlo fittings, reducing the risk of presenting an erroneous parameter set due 

to random chance of minimization of the sum of squares of errors (SSE) objective function.    

After parameter estimation for each model, we then began the process of model selection 

(see SI Methods) to identify the optimal model. We performed two statistical tests, the Akaike 

Information Criteria (AIC) and F-test [44] (Figs. S10 and S11), to determine which of the models 

most accurately describes the experimental Tp5 protein level (Fig. 2D and 2G) and virus 

production over time (Fig. 2H) data for all vDNAin,0. We then analyzed the contribution of each 



 

regulatory component (Fig. S12) and the variability of each estimated parameter value, SSE, and 

model fit (Figs. S2-S7) to help confirm the predictions made by the statistical tests and increase 

our confidence in the model selection. 
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Results of the AIC comparison between different models clearly showed that model 3 has 

the highest likelihood of correctness, followed closely by model 1 (Fig. S10). Model 1 was less 

than 90% likely only when compared to models 2 and 3 (Fig. S10). The top row of Fig. S11, 

showing the comparison of the least complex model 1 tested against all other, more complex 

models using the F-test, indicates that only model 3 yields an F-statistic and corresponding p-

value lower than our Bonferroni-corrected significance level of 6 x 10-3, which was determined a 

priori. Furthermore, when the one-regulation models (2, 3, and 4) were compared against the two 

regulation models (5 and 6), only the comparison between models 4 and 5 led to a significant p-

value. Since models 4 and 5 are not distinguishable, these results indicate that a one-regulation 

model is likely optimal. In summary, the results of both the AIC and F-test dictate that model 3 is 

likely the optimal model to describe the data (Figs. S2C-S7C and S10-S11). 

When analyzing at the contribution of each regulatory parameter (Fig. S12), we can see 

that the regulation present in model 3 shows a smooth curve spanning the entire range of the 

function (e.g., 0-1) over its domain for all vDNAin,0 (Fig. S12B). Conversely, the regulation in 

model 2, for example, shows little change in the regulatory function and its effect is only 

appreciable at high vDNAin,0 and late in the infection (Fig. S12A). This trend is mimicked by model 

4 (Fig. S12C) and by the feedback inhibition terms (R1,6) in model 6 (Fig. S12E). Interestingly, if 

R1,6 is reduced to unity for both Tp51 and Tp52 R1,6 terms, the ODEs for model 6 reduce to model 

3. Furthermore, the R2,6 terms in model 6 show a range similar to that exhibited by model 3 (Fig. 

S12C and S12E). Finally, model 5 shows inconsistency in its regulatory terms: R1,5 for Tp2, but 

not Tp51, shows acceptable range, while R2,5 shows acceptable range for Tp51, but not Tp52. This 

inconsistency is likely due to numerical compensation, where an increase in one estimated 

parameter can be compensated by a decrease in a conjugate estimated parameter leading to 

many equivalent solutions. This suggests that there is no unique solution for the parameters 

associated with this model, decreasing our confidence in this model’s true correctness. In support 



 

of this argument, Figs. S2C-7C show a large variability in the majority of parameters for models 2, 

4, 5, and 6. This is also present in Figs. S8 and S9. In Fig. S8, a large spread of the 200 pseudo-

Monte Carlo iterations indicates a large variability in the estimated parameter values, and in Fig. 

S9, a large difference between the dashed and solid curve indicates a large difference between 

the average parameter set and the parameter set yielding the lowest SSE. This same result can 

also be seen in the variability between SSE obtained with the average parameter set and the 

lowest obtained SSE and AIC (Figs. S2C-S7C). Interestingly, model 3 not only has a small 

variability in obtained parameter values (Fig. S4C), but its average and minimum values are so 

close that they are indistinguishable in Fig. S9. This fact is supported by the SSE and AIC values 

shown in Fig. S4C.  
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In summary, to determine the most optimal model, we implemented a careful statistical 

analysis to determine the optimal number of regulatory terms as well as integrative examination 

of the AIC, contribution of regulatory terms, parameter/model fit variability, and SSE variability. 

Results of this analysis led to the conclusion that, in fact, model 3 yields the most optimal and 

parsimonious description of the data.  

In the best-fitting model (Fig. 3A), vDNAtot drives Tp51 protein production (ks,1, Km,1), 

which combines with vDNAtot to generate capsids (ks,C) as formulated in Eqs. 5 and 7 (see 

Methods). Regulation of Tp51 production occurs through acceleration of Tp51 degradation (Km,3). 

In this model, we hypothesize that vDNAtot is in excess due to the large size of the nuclear 

replication center and production of concatemeric genomes with egress requiring single genome-

containing capsids [45]. Additionally, it is known that procapsids are rapidly converted to vDNA-

containing capsids suggesting that vDNA must be in excess for the process to be kinetically 

favorable [46]. We hypothesize that Tp51 consumption is through normal cellular degradation 

pathways (kd,1) and capsid assembly (ks,C). Although pUL44 is not a capsid protein, we used 

measurements of pUL44 levels as a representative nuclear protein with Tp5 kinetics [13, 47, 48]. 

This Tp51 placeholder will be expanded to account for additional proteins in future studies. In our 

model, Tp52 production (ks,2, Km,2) represents late cytoplasmic proteins that associate with the 

capsid after nuclear egress. We hypothesize that these proteins are consumed through 



 

degradation pathways (kd,2) and particle assembly (ks,P) as accounted for in Eqs. 6 and 8 (see 

Methods). Regulation of Tp52 production occurs through acceleration of Tp52 degradation (Km,4). 

Intracellular viral particles leave the cell (kex) and their concentrations are diluted in culture media 

as accounted for in Eq. 9 (see Methods) (Fig. 3A). We normalized experimental data to the 

maximum of the dataset with vDNAin,0 = 131 genomes/cell at 96 hpi to maintain magnitude 

consistency in the SSE objective functions used in parameter estimation. 
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Fit of the model 3 system of ODEs (Eqs. 5-9) to experimental data is shown in Figs. 3B, 

3D, and 3F. Overall model 3 fit to experimental data was acceptable giving an AIC of -230.5 (Fig. 

S4C). Simulations of Tp51 and Tp52 expression as well as virus production are shown in 2-

dimensional and 3-dimensional plots over time and many vDNAin,0 in Figs. 3C, 3E, and 3G. 

Simulating changes in Tp5 levels upon increasing MOI (or vDNAin,0) showed expression starting 

to occur at immediate early times (Fig. 3C and 3E). Starting at 24 hpi, we simulated infectious 

HCMV production at varying vDNAin,0 (Fig. 3G). Predicted virus production kinetics showed 

saturation at high vDNAin,0 and suboptimal replication at low vDNAin,0. 

To assess the correlation and individual estimability of each parameter for model 3, we 

generated a correlation matrix (Fig. S13A) and performed a sensitivity analysis (Fig. S13B) [49-

51]. The correlation matrix showed that there was a high degree of correlation between the 

protein degradation rate constants kd’s and other parameters within the same ODEs (Fig. S13A). 

The sensitivity analysis (Fig. S13B), which shows the relative change in parameter value (p/p0) 

versus the relative change in the error function (SSE/SSE0), showed expected parabolic behavior 

for all parameters but kex. Regulatory parameters Km,3 and Km,4 do show parabolic behavior 

between 0.5p0 and 1.5p0, albeit on a much smaller scale than Km,1 and Km,2. To break parameter 

correlation and minimize the number of estimated parameters, we opted to fix kd1, kd2, and kex in 

all models for parameter estimation and further model analyses. Simulations of individual model 

state variables in absolute units for model 3 can be found in Fig. S14. 

 

Model of HCMV late lytic replication cycle predicts conditions for maximal efficiency for 

HCMV replication.  



 

Viral titers are experimentally measured in absolute quantities such as IU/ml. In order to 

revert back to these units, the simulated data were vertically scaled by a factor of 107 IU/ml as 

shown in Fig. 4A comparing vDNAin,0 (MOI) and total virus production over time. This 

multiplicative factor was chosen since it was the order of magnitude of the normalizing factor (i.e., 

maximum of the virus titer data set) used to model virus data in Fig. 3F. We have extended the 

range of each variable and, using numerical estimates, we defined the approximate range 

containing the maximum fold change for vDNAtot occurs upon infection vDNAin,0 of 9 and 13 

genomes/cell (0.688 to 0.994 IU/cell) (Fig. 4B Left). This range is just above that of the 

extracellular virus which occurs upon infection with 5 to 9 genomes/cell (0.382 to 0.688 IU/cell) in 

primary fibroblasts (Fig. 4B Right). 
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Our studies have resulted in a simulation of dynamic relationships occurring during 

HCMV infection for the purpose of predicting how changing one or more variables will impact 

others in the complex process of HCMV replication. We plotted the relationship between vDNAtot 

and relative Tp51 and Tp52 levels over time (Figs. 4C and 4D, respectively) and colorized with 

fold change in vDNA between 2 hpi and 96 hpi. Fig. 2C and 2F suggest an approximate linear 

range of relative protein level between 0.25 and 1 relative units [52]. Simulations in Figs. 4C and 

4D suggest that relative Tp51 and Tp52 quantities only begin to reach levels within this linear 

range at 96 hpi when the fold change in vDNA between 2 hpi and 96 hpi is maximized (Figs. 4C 

and 4D, red area). Furthermore, relative levels of virus production within this same range of 

vDNAin,0 are within approximately 1 x 10-4 to 0.83 which is the largest acceleration in virus 

production (Fig. 4E). Hence, we hypothesize that a pattern of a Tp51 (e.g., pUL44) or Tp52 protein

(e.g., pp28) kinetic expression similar to that in the red region in Figs. 4C or 4D would indicate a 

maximally efficient virus production. It is important to note in Figs. 4C and 4D that at very high 

vDNAin,0, there is an increase in Tp51 and Tp52 proteins prior to 24 hpi and is hypothesized to be 

a result of dysregulated viral gene expression kinetics. In support of this hypothesis, simulations 

Fig. 4E also support inefficient virus production at high vDNAin,0. 

 

Recombinant HCMV strains containing tagged viral proteins are routinely used to define 

expression and function of viral proteins during replication. To obtain higher temporal resolution 



 

data during the 4-day replication cycle and evaluate the accuracy of simulated data built from 

limited time points, we infected fibroblasts with recombinant HCMV TB40/E IE2-2A-eGFP UL99-

mCh at multiple vDNAin,0, as described previously. Using this system, we captured fluorescence 

data for pp28-mCherry (Tp52) along with free eGFP every 2 h for 97 h using a live cell imaging 

platform (Fig. 4F and movies S1-S3). We determined the average relative mCherry signal 

intensity to maximal signal occurring at infection of vDNAin,0 = 131 genomes/cell at 97 hpi (Fig. 

4H). Fig. 4G shows single cell analysis of the vDNAin,0 = 3 genomes/cell fluorescence data, 

highlighting the cell-to-cell variability that is frequently lost when looking at data from infected cells 

pooled for traditional protein analysis (e.g., immunoblot). Fig. 4I shows predicted Tp52 expression 

from model 3. In a post hoc comparison of Figs. 4H (in vitro data) and 4I (in silico model), we can 

see good correspondence of the model and the data indicating that our simulation of pp28 closely 

matches data obtained from an alternative experimental measurement and at a higher temporal 

resolution that is not possible using standard methods of protein quantification. 
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DISCUSSION 

HCMV lytic replication is an immensely complex process that occurs over a relatively 

protracted time period and involves hundreds of viral and host proteins in an elaborate interplay 

that eventually results in newly produced virions. As such, it is infeasible to attempt to 

quantitatively understand the process without the use of computational aids. Computational 

modeling is a well-established tool while its application to the HCMV lytic replication cycle 

remains relatively novel. In our studies, we developed two models based on experimental data. 

The first was an empirical model of vDNA replication (Fig. 1). In this model, we hypothesized an 

initial decay of vDNAin, which was then followed by an increase in vDNArep. The output from this 

vDNA model was then used to drive a model of the late lytic replication cycle, which began with 

late viral protein expression and culminated in predictions of capsid, intracellular viral particle, and 

extracellular virus production kinetics (Fig. 3). The model of viral protein expression predicted an 

increase in protein degradation at late times that followed the trend of increasing vDNA as 

infection progressed. This interaction could be related to an increase in proteasome activity that 



 

promotes protein degradation and demonstrated to occur for HCMV [53-55], lending further 

experimental support to this proposed mechanism. In addition, herpesvirus capsids do undergo 

protease-dependent maturation [56], and numerous DNA and RNA viruses undergo late-stage 

maturation events involving protein cleavage, most notable is HIV [57]. The HIV-1 protease 

inhibitor, Nelfinavir disrupts secondary HSV-1 envelopment [57], and its anti-herpesvirus efficacy 

is under clinical investigations. Our simulations have uncovered a possible role for increased 

protease activity in HCMV maturation. 
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We observed several significant predictions from this data-driven computational model: 

(1) saturation kinetics at high MOIs, (2) inefficient replication at low MOIs, and (3) a range of 

MOIs where virus replication is maximized in primary human fibroblasts. Results shown in Fig. 3 

and 4 demonstrate an ideal MOI where vDNA and virus production are maximized. MOIs below 

this maximal range yield suboptimal replication efficiency and are predicted by our model to lead 

to abortive infections. Furthermore, MOIs above this range represent diminishing returns. This is 

an example of a biological Goldilocks phenomenon [58], where both too little and too much virus 

applied to a system leads to suboptimal replication. Another common analysis performed on 

models involves determination of a rate-limiting step. In the setup of our model, the forward 

synthesis rates ultimately leading to infectious virus production are ks,1, ks,2, ks,C, ks,P, and kex, and 

their values are shown in the SI Appendix. While it is likely impossible to define an overall rate-

limiting step for all HCMV replication from this model, we can potentially define rate-limiting steps 

in several subprocesses included in our model. First, we found that the slowest rate of protein 

production was ks,1 (6.24 x 102 genomes/cell/h), indicating that Tp51 proteins are produced slower 

than Tp52 proteins (7.6 x 102). Second, we found that ks,C (1.116 x 10-6 cell/genomes/h) was 

smaller than ks,P (3 .090 x 10-5 cell/genomes/h) indicating that formation of intranuclear, loaded 

capsids was the rate-limiting step in the process of capsid synthesis and viral egress, which has 

been previously suggested in studies on nuclear egress [59]. 

Our data-driven models of viral genome synthesis and late protein expression can be 

expanded to include other mechanistic components of the replication cycle. For example, the 

model by Vardi et al. [27] predicts expression kinetics via the major immediate early promoter 



 

(MIEP) and feedforward activation of the IE1 protein based on virion-delivered pp71 (Tp5) [13, 

60, 61]. It is reasonable to propose that the MIEP-dependent constants may, in fact, be non-

constant and vary with MIEP containing-vDNAin,0. Given that at saturating MOIs most cells are 

multiply infected, the parameter representing basal IE1 expression independent of transactivation 

and feedforward mechanisms could be of greater influence on the ODE governing IE1 

expression. It is likely that as vDNAin,0 increases, the concentration of pp71 will also increase 

leading to early saturation of its abilities to de-silence the MIEP. In fact, it is known that the 

effectiveness of pp71 wanes as MOI increases to the extent that it is only required for infection at 

low MOI [62]. The Vardi et al. [27] model predicts that increasing pp71 concentrations could 

sustain IE1 expression even in the absence of positive feedback. Thus, a reasonable hypothesis 

resulting from combining models is that despite low production of Tp52 proteins at low MOIs, 

supplementation with excess pp71 during subsequent infection could sustain IE1 expression as 

predicted by Vardi et al. [27] and, by extension, a productive infection despite a potentially 

suboptimal or even abortive MOI as seen in our simulations. To some degree, this has been 

demonstrated by the inclusion of an expression vector for pp71 during the process of obtaining 

infectious virus from transfected genomes [63].  
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To connect additional processes, substantial amounts of published kinetic data exist that 

can be used to build additional empirical or ODE-based models by simply aligning genome 

kinetics to our simulation. For our studies, we specifically used absolute quantification of viral 

genomes/cell to avoid discrepancies introduced when using an MOI-based approach. As an 

example, we overlaid protein expression data from Weekes et al. [13] showing near identical 

kinetics of pUL44 and pp28 at vDNAin,0 of 131 genomes/cell. This alignment allows for expansion 

to multiple expression classes and perhaps specific viral proteins. Alternatively, tracking 

recombinant viruses expressing fluorescently tagged viral proteins as done here provides a 

unique opportunity to obtain higher resolution kinetic data. Recently Rand et al. [64] introduced a 

triple fluorescent HCMV strain with fluorescence in each of three expression classes. As we move 

forward, we anticipate using this new base model to account for more precise mechanisms 

governing HCMV replication. 



 

While our studies present a robust and predictive model of late HCMV replication, there 

are some limitations. Our experimental methods used a single cell type, a single strain of HCMV, 

a single stock of virus, and growth arrested cells. These steps were necessary to reduce the 

complexity of the system and potentially control the variability in the data, both of which are 

necessary to facilitate computational modeling. Imposing these experimental restrictions, 

however, reduces the generalizability of our model. Future studies will explore kinetics in different 

cell types and in a steady-state infection as recently done in hepatitis C [24]. The creation of an 

ODE-based model also required the introduction of simplifying assumptions. First, we assumed 

that the vDNAtot in the system was a good approximation of the free vDNA available for protein 

expression and gene regulation. This assumption was required so that we were able to use the 

vDNAtot value at any time and vDNAin,0 as the driving force for the model of the late lytic 

replication cycle (Fig. 3). This assumption is justified because mature C-type capsids represent a 

small fraction of the total capsid types in the nucleus with viral terminase activity requiring an 

excess of vDNA templates for packaging [32-37]. Next, the mechanisms proposed in our model of 

the late lytic replication cycle represent the lumping of many, potentially unmeasurable, smaller 

subprocesses. For instance, vDNA goes through an mRNA intermediary to produce viral proteins. 

We accounted for the mechanistic kinetics of many binding events during protein expression and 

the potential of protein synthesis machinery (e.g., ribosomes) saturation by introducing Michaelis-

Menten kinetics, characterized by Km parameters. We introduced these kinetics to avoid using 

delay differential equations (DDEs) [65], which generally are slower to solve and not amenable to 

parameter estimation where the model equations are solved many times and compared to 

experimental data via the SSE in order to obtain optimal parameters. Simplifying assumptions 

were made in an effort to avoid overparameterization, which is a problem with many 

mathematical models, including ODE-based models [65]. Future research will focus on obtaining 

viral mRNA kinetic data as well as higher resolution kinetic data for late proteins that may be used 

to relax the aforementioned assumptions. The advantage of using a computational model such as 

the one presented in this article is that it can be expanded to explicitly account for the exact 

pathway once it has been elucidated in full. For now, however, we can model the relationship as 
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presented and still generate useful predictions. Finally, the Bonferroni-corrected p-value used 

when determining significance for the F-test may be too stringent for the number of comparisons 

that were made. Given the nature of our work, however, we were inclined to strictly minimize the 

SSE. 
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We used a systematic and modular approach to modeling in an effort to provide an 

accurate and robust mathematical representation of the complex lytic replication cycle. First, we 

employed a pseudo-Monte Carlo parameter estimation protocol using the minimal number of 

estimable parameters and fixing other highly correlated or insensitive parameters to obtain an 

optimal parameter set that minimized the sum squared error for the model of the late lytic 

replication cycle (Fig. 3). For model selection we performed three analyses: (1) As described in 

the results, we used a systematic approach involving the AIC and F-test to justify or reject the 

inclusion of additional parameters and avoid overparameterization. This led to the conclusion that 

model 3 was the best-fitting model; (2) We analyzed the contribution of each regulatory 

component in each model and the variability of estimated parameters and SSE. If estimated 

parameters led to small contributions of regulatory components or showed high variability, that 

model was rejected, as described in the results; and (3) Finally, the results of a runs test on 

model 3 [44] failed to reject the null hypothesis indicating that the curve does not systematically 

deviate from the data. Admittedly, it is possible that a different combination of mechanisms or a 

completely different model may, in fact, provide a more accurate description of experimental data 

and might not have been considered. However, we believe that the combination of these methods 

should provide a robust and parsimonious model.  

 

MATERIALS AND METHODS 

Cells, Viruses, and Biological Reagents 

Dual fluorescently tagged TB40/E HCMV expressing IE2-2A-eGFP and UL99-mCherry 

was generously provided by Dr. Eain Murphy. Viral stocks were propagated as a P1 stock on 

MRC-5 fibroblasts (ATCC) and concentrated by collecting culture medium and pelleting through a 

sorbitol cushion (see SI Methods). Viral stock titers were obtained by a limiting dilution assay 



 

(TCID50) assay on MRC-5s. For studies involving infected cells, MRC-5 fibroblasts were plated 

onto 6-well dishes at a density of approximately 300,000-500,000 cells/well and allowed to grow 

until confluent and growth arrested for at least two days for cell cycle synchronization. Cells were 

infected at the indicated MOI using an approximation of 1 x 106 cells per confluent well. Further 

information regarding titering as well as protein and nucleic acid assays can be found in SI 

Methods. 
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Model Development, Parameterization, Validation, and Statistical Testing 

Empiric Model of vDNA Kinetics. For vDNA replication, we developed the following 

empirical model (Eqs. 1-3) based on the hypothesized schematic in Fig. 1A. 

𝑣𝐷𝑁𝐴 𝑡 𝑣𝐷𝑁𝐴 𝑡 𝑣𝐷𝑁𝐴 𝑡       [1] 

𝑣𝐷𝑁𝐴 𝑡 𝑣𝐷𝑁𝐴 ∙ 𝑒 . .
, ;  𝑣𝐷𝑁𝐴 𝑡 , ∙

    [ ] 2

where  

. ∙ , ; 
∙

𝑣𝐷𝑁𝐴 , 𝑡 , 76.3 ; 𝑛 1.7𝑒 . ∙ , 3.1 [ ] 
. , .

3
,

vDNAtot is the total vDNA in the system, while vDNAin is the input vDNA contained within the 

inoculum, and vDNArep is the newly produced (replicated) vDNA. vDNAin is estimated to have an 

initial value vDNAin,0 linearly proportional to the MOI (Fig. 1C) and to decay over time as a single 

exponential function with the decay rate constant kd = 0.1. In the empirical model of vDNArep, 

vDNArep,max represents the maximal replication achieved at a specific vDNAin,0 or MOI; t50 is the 

horizontal shift component of vDNArep corresponding to the time required to achieve 50% of 

maximal replication at a specific vDNAin,0 or MOI; and n is the Hill coefficient for replication at a 

specific vDNAin,0 or MOI indicating the degree of effective cooperativity.  

The qPCR data in Fig. 1D was used to parameterize the model for each vDNAin,0 or MOI 

independently employing a pseudo-Monte Carlo parameter estimation method described below 

using several iterations. Parameter vs. vDNAin,0 data was gathered and then subjected to 

nonlinear regression using the MATLAB (MathWorks Inc.) Curve Fitting Tool to generate the 

parameters for the above equations. These vDNAin,0-dependent curves were then input into the 

parameters for Eq. 2. The pseudo-Monte Carlo parameter estimation protocol for fitting the model 



 

equations involved minimizing the SSE (Eq. 4) using the MATLAB Optimization Toolbox 

“fmincon” function (see SI Methods). This procedure was run for several iterations, and the 

parameter set yielding the lowest SSE was selected as the optimal parameter set. For the vDNA 

model, the SSE was defined as  

𝑆𝑆𝐸 ∑ 𝐷𝑎𝑡𝑎 𝑡 𝑀𝑜𝑑𝑒𝑙 𝑡
2
.         [4] 

where the data value was the mean of three biological replicates.  
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   Deterministic Model of the Late Lytic Replication Cycle.
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To develop the mechanistic 

computational model of late viral replication, we postulated six different models accounting for 

different regulatory mechanisms as described in Fig. 2A and in the Results section. A general 

equation for each of the models is described in Eqs. 5-9: 

𝑘 , 𝑅 , 𝑡 𝑘 , 𝑇𝑝5 𝑅 , 𝑡 𝑘 , 𝑣𝐷𝑁𝐴 𝑇𝑝5     [ ] 5

𝑘 , 𝑅 , 𝑡 𝑘 , 𝑇𝑝5 𝑅 , 𝑡 𝑘 , 𝐶𝑎𝑝𝑠𝑖𝑑 𝑇𝑝5 [ ]  6 

𝑘 , 𝑣𝐷𝑁𝐴 𝑇𝑝5 𝑘 , 𝑇𝑝5 𝐶𝑎𝑝𝑠𝑖𝑑      [7] 

𝑘 , 𝑇𝑝5 𝐶𝑎𝑝𝑠𝑖𝑑 𝑘 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒             [8] 

𝑘 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒                 [9] 

where [X] represents the concentration of a state variable “X” in the absolute units of vDNA 

(genomes/cell). R1,i(t) and R2,i(t) represent the putative regulatory components investigated in 

models 2-6 and are described by: 

1 𝑖  1,2,3
𝑅 , 𝑡                  [10] 𝑖  4,5,6

  

1 𝑖  1,4
⎧

𝑖  2,5𝑅 𝑡   ,                [11] 
⎨

𝑖  3,6⎩

Definitions and values of the parameters in Eqs. 5-9 can be found in the SI Appendix. Nuclear-

localized, capsid-forming Tp51 proteins are produced from vDNAtot (substrate) with a rate ks,1 

(genomes/cell/h) with saturable kinetics characterized by Michaelis-Menten constant Km,1 

(genomes/cell) and consumed by self-degradation with a rate constant kd,1 (1/h) and 



 

condensation with vDNA to form vDNA-loaded capsids with a rate constant ks,C (cell/genomes/h) 

(see Fig. 2A). Tp51 synthesis is potentially regulated by feedback inhibition by Tp51 (models 4-6) 

and Tp51 degradation is potentially modulated following the trend of increasing vDNAtot (models 

2-6) (Figs. S2-S7). Cytoplasmic-localized, tegument-associated Tp52 proteins are synthesized, 

degraded, and regulated in a similar manner to Tp51 proteins. Production and consumption of 

intranuclear loaded capsids and intracytoplasmic viral particles follow from mass balance. Finally, 

intracellular viral particles are consumed by leaving the infected host cell and entering the 

surrounding media (kex; 1/h). In Eq. 9, Vmedia is defined experimentally as 1 ml and Vcell is defined 

as the total cellular volume of 1 x 106 cells in each well approximated at 0.002 ml [66].  
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During parameter estimation, it was necessary to account for normalization and the 

contribution of intracellular capsids and/or particles to the measurement of Tp5 proteins since the 

starting material subjected to immunoblot was an unfractionated, whole-cell lysate. We accounted 

for the contribution(s) of capsid and particle by, first, constraining the parameter estimation 

algorithm such that subsequent unnormalized state variables were at least 1 order of magnitude 

smaller at 96 hpi and vDNAin,0 = 131 genomes/cell to provide a thermodynamic driving force 

toward infectious virus production (e.g., Tp51(96,131) = 5000 genomes/cell, while Capsid(96,131) 

= 500 genomes/cell). We then summed the relevant species in units of genomes per cell and 

normalized this quantity to the maximum of this sum at t = 96 hpi and vDNAin,0 = 131 genomes 

per cell to obtain a quantity comparable to the experimental data. See SI Methods for further 

information on model parameterization and comparison. 
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Fig. 1. Empirical model of HCMV DNA replication predicts saturation kinetics at high MOIs. 

(A) Schematic of an empirical model of HCMV viral genome (vDNA) synthesis during replication. 

vDNAin represents cell-associated genomes upon infection with decay rate, kd. vDNArep 

represents replicated genomes, and vDNAtot is total contribution of all subspecies. (B) Total DNA 

was isolated from growth-arrested MRC-5 fibroblasts infected at an MOI of 0.1, 0.5, or 5 

infectious units per cell (IU/cell) based on 1 x 106 cells using HCMV strain TB40/E encoding IE2-

(T2A)-eGFP and pp28-mCherry (IE2-2A-eGFP UL99-mCh). Absolute viral (UL123 gene) and 

cellular (CDKN1A gene) DNA levels were determined between 2-96 hpi. Mean  standard 

deviation (SD) is plotted from three biological replicates and two technical replicates. (C) Solid 

line represents linear regression and closed circles represent data points, correlating MOI 

(IU/cell) and vDNA (genomes/cell) and shading represents the 95% confidence interval. (D) Fit of 

empirical model (solid curves) to experimental data of vDNAtot (genomes/cell). (E) Each curve 

represents predicted vDNAtot kinetics at a specific vDNAin,0. Magenta and cyan curves described 

in (F). (F) Predictive simulations of vDNAtot (solid curves) compared to data collected post hoc 

(closed circles) at vDNAin,0 of 6 (Magenta; MOI 0.23) and 0.2 genomes/cell (Cyan; MOI 0.01). 

Error bars represent SD of three biological replicates and three technical replicates. (G) Coloring 

of predictions represents the fold change of vDNA between 2 and 96 hpi (vDNAtot at 96 

hpi/vDNAin,0). Closed circles represent vDNAtot data from (D) and (F). (H) Model predictions of 

vDNAtot separated into vDNAin and vDNArep kinetics at varying vDNAin,0. 

 

Fig. 2. Quantitative measurements of state variables of HCMV replication at multiple MOIs. 

(A) Schematic of a framework for HCMV replication starting from vDNAin,0 (genomes/cell) to 

infectious extracellular virus (IU/ml) involving total genomes vDNAtot, nuclear Tp5 proteins Tp51, 

cytoplasmic proteins Tp52, capsids C, particles P, rates of synthesis (ks,n) and degradation (kd,n) 

for each species n listed. kex represents the rate of virus release. Additional putative mechanisms 

(dashed arrows) are postulated for improving model fit to experimental data. (B) Immunoblots of a 

representative nuclear protein, pUL44 (Tp51) during infection by HCMV TB40/E (IE2-2A-eGFP 



 

UL99-mCh) at vDNAin,0 of 3 (MOI 0.1), 14 (MOI 0.5), and 131 (MOI 5) genomes/cell. Whole-cell 

lysates from infected MRC-5 fibroblasts were collected and analyzed using an antibody against 

pUL44 (Tp51). A 96 hpi protein standard from whole-cell lysate infected at an MOI 5 IU/cell with 

TB40/E-eGFP. Representative total protein is shown. Asterisks (*) indicate bands quantified; data 

represent two biological replicates for each vDNAin,0. (C) Total protein (squares) lane volumes 

normalized to the undiluted standard (Std 1). Standard pUL44 (triangles) band volumes 

normalized to undiluted Std 1 band volume. Mean ± SD are plotted from two biological replicates 

totaling six data points for each dilution. (D) The pUL44 (Tp51) band volumes were normalized to 

total protein to account for loading error. The values were set relative to Std 1 to normalize 

between membranes and set to a maximum value within the replicate to obtain relative values 

between 0 and 1. Mean ± SD are plotted from two biological replicates. Quantities of pUL44 from 

Weekes et al. [13] are shown. (E) Immunoblots of a representative cytoplasmic Tp5 protein, pp28 

(Tp52) as in (B). Asterisks (*) indicates pp28-mCherry. The same protein standard from Fig 2B 

was used. (F) Total protein and pp28 signal of the protein standard as in (C). (G) The pp28-

mCherry (Tp52) band volumes were normalized to total protein to account for loading error, 

values were set relative to Std 1, then set to a maximum value within the replicate to obtain 

values between 0 and 1. Quantities on pp28 from Weekes et al. [13] are shown. (H) Titers were 

determined by infectious units assay and data are the mean  SD from two biological replicates 

for each vDNAin,0. (I) Infectivity was determined by setting UL123 gene copies relative to 

infectious units from Fig. 2H. Dotted line indicates infectivity of the viral stock inoculum with mean 

 SD from two biological replicates. 
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Fig. 3. Best fit deterministic model describing expression of HCMV temporal profile 5 

proteins from viral DNA to extracellular infectious virus. (A) Best fit model predicting 

increasing Tp5 degradation with increasing vDNA. (B) Fit of deterministic model (curves) to the 

immunoblot data of a representative nuclear Tp51 protein (pUL44; closed markers) at vDNA  
in,0 of 

3, 14, and 131 genomes/cell. Best fit model parameters were estimated using a pseudo-Monte 

Carlo minimization procedure. (C) Two-(left) and three-(right) dimensional model predictions of 



 

Tp51 kinetics at varying vDNAin,0. (D) Fit of deterministic model (solid curves) to experimental 

immunoblot data of a representative cytosolic Tp52 protein (pp28; closed markers). Best fit model 

parameters were estimated by using pseudo-Monte Carlo minimization procedure. (E) Two-(left) 

and three-(right) dimensional model predictions of Tp52 kinetics as in (C). (F) Fit of deterministic 

model (solid curves) to normalized experimental viral titer data (closed markers). Viral titers were 

normalized to the maximum value in each replicate resulting in arbitrary units (AU) to ensure 

comparable ranges between fitted data sets. Normalized experimental data shown relative to 

maximum in the data set (MOI 5, 96 hpi). Parameters were estimated using a pseudo-Monte 

Carlo minimization protocol. (G) Two-(left) and three-(right) dimensional model predictions of 

normalized infectious virus production varying by vDNAin,0 and time starting at 24 hpi. 
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Fig. 4. Simulations of viral output show saturation kinetics mirroring experimental 

evidence and predictive of optimal replication from vDNAin,0. (A) The normalized simulations 

from Fig. 3G were converted back to measurable units of IU/ml using a conversion factor of 107 

IU/ml. Color differences represent the calculated fold change occurring between 24 and 96 hpi. 

(B) Plots of vDNAtot (left) or Virus (right) fold changes versus vDNAin,0. Maximal fold change 

occurs for vDNAtot when 9 < vDNAin,0 < 13 and for Virus when 5 < vDNAin,0 < 9. (C) 4D 

visualization of the relationships between time, vDNAtot, vDNA fold change (color), and Tp51,tot 

,(D) Tp52,tot ,and (E) relative viral titers. (F) Increased data resolution obtained using live-cell 

imaging during HCMV infection. MRC-5 fibroblasts were infected as described in Fig. 2. Images 

were captured every 2 hpi using phase contrast, green (460 nm, IE2-T2A-eGFP), and red (585 

nm, pp28-mCherry) channels. Representative image for different vDNAin,0 at 24 and 72 hpi are 

shown with video in Supplemental Information. (G) Single cell measurements were completed at 

vDNA = 3 showing pp28-mCherry intensities per eGFP-positive area over time starting at 

approximately 36 hpi. Open triangles represent cells lysing prior to 96 hpi. (H) HCMV pp28-

mCherry fluorescence signal per well for all inputs in Fig 4F relative to 96 hpi at vDNA of 131 

genomes/cell and (I) predicted Tp52 kinetics over a replication cycle shows agreement with high-

temporal resolution data. 
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