
HPPH Liposomes for Phototherapy-Induced Intracellular Release of TNO-155 

in Macrophages 
Clayton W. Lundberg1,2, Sayantan Sinha1, Huda Zayed3, Shayan Shaifee1, Daochun Sun3, Amit Joshi1

1Biomedical Engineering, 2MCW Medical School, 3MCW Cancer Research Center

Background
• Neurofibromatosis Type 1 (NF1) affects 0.03% of newborns1

• NF1 is associated with malignant peripheral nerve sheath
tumors (MPNSTs) which exhibit extensive immune cell
infiltrate; up to 40% of tumor volume consists of
macrophages in some cases1

• Despite immune cell infiltration, the tumor 
microenvironment (TME) allows for continued tumor 
growth1

• Past studies have shown that TNO-155, a SHP2 inhibitor, is
able to target both tumor cells and alter macrophage
polarization2

• Photochlor (HPPH) is an FDA-approved phototherapy that
can be used to degrade liposomes3

• Phototriggered release of TNO-155 from Lipid Nanoparticles
(LNPs) will activate and repolarize macrophages and will
have dual therapeutic action on the TME by enabling direct
cancer cell death as well as altering the TME to tumor
suppressive rather than tumor supporting.

Hypothesis
• HPPH liposomes containing TNO-155 can be phagocytosed

when added to a macrophage culture, and the contents will 
be released as a result of phototherapy.

• A custom cell segmentation algorithm can be designed to
more effectively segment macrophages

DiR

HPPH

TNO-155

Macrophage

Methods: Liposome Synthesis

• Liposomes were prepared by thin film organic synthesis
• Lipids used: DPPC, DC8,9PC, and DSPE-PEG2000
• DPPC and DC8,9PC were mixed with TNO-155 and stirred in

the presence of Argon for 6 hours in CHCl3:MeOH (1:1)
• DSPE-PEG2000, DiR, and HPPH were added and stirred for

6 hours under inert conditions

• A thin film was formed
under high vacuum
rotation followed by
sonication. Purification
was done through
column chromatography
and centrifugation

Methods: Cell Segmentation Algorithm

• A Nikon TI-2E was used to image M2 macrophages

• Matlab was used to train a Cellpose 2.0 model5,6

• Once initial model was generated, human-in-the-loop

training was used to further refine the model using

Matlab’s Image Labeler

• Both focused and unfocused images used in model

training to enhance model’s ability to segment cells out

of the plane of focus

Results
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Equation

y = A1 + (A2-A1
)/(1 + 10^((LOG
x0-x)*p))

Reduced 
Chi-Sqr

4.46938E-6

Adj. R-Square 0.99579

Value Standard Error

C A1 0.01378 0.00588

C A2 0.10298 0.00252

C LOGx0 1.67257 0.1548

C p 0.6037 0.08884

C span 0.08919

C EC20 4.73473

C EC50 47.05141

C EC80 467.57341

Drug Loading Kinetics 

TNO-155@Lipo

Total Lipid Conc.: 15mg/mL
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Estimation of Drug Encapsulation

Concentration of Drug 

Encapsulated: 3.05 M

Drug Loading Efficiency: 61% 

Figure 1: Drug loading statistics for TNO-155 in liposomes: Standard curve of absorbance of TNO-155 (left), drug loading kinetics (middle), and approximation 
of drug encapsulation (right) 
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Figure 2: Intracellular signals of DiR (left) and HPPH (right) among different 
treatment groups: Liposomes with TNO-155 and DiR (top), Liposomes with TNO-
155, DiR, and HPPH (middle), and Liposomes with TNO-155, DiR, and HPPH after 
phototherapy (bottom). Brighter and darker areas indicate stronger and weaker 
fluorescent signals, respectively.

• The graphs in Figure 1 show a drug loading efficiency
of 61% based on a standard curve of TNO-155
absorption and readings of surfactant-induced burst
release of TNO-155 from liposomes

• Fluorescent microscopy images in Figure 2 show
minimal fluorescent signal from DiR when loaded in a
particle with HPPH prior to phototherapy and is
revealed post-therapy

• The images in Figure 3 shows the improved M2
macrophage segmentation performance when using a
Cellpose model trained on a custom dataset compared
to using the same model on the pre-trained
counterpart

Default Model Custom Model

Figure 3: Cell segmentation with default Cellpose Cyto 2.0 model (left), and custom 
trained Cyto 2.0 model (right)

Discussion
• The results show the ability to load therapeutic compounds

into liposomes and have the particles phagocytosed when

added to an in vitro culture of M1/M2 macrophages, making

it a potential candidate for targeted drug delivery and

photodynamic therapy

Nanoparticle Design Concept

• There is an existing challenge to showcase the photodynamic

property of LNPs in a multimodal photophysical environment.

Here, the synthetic methodology involving organic phase

synthesis yielded the electrostatic interaction of aza-crown-

HPPH and DiR with excellent lipid layer compartmentalization.

This allowed us to explore the multimodality of the through

utilization of the photophysical characteristics of both HPPH

and DiR as shown in Figure 2. This desired photodynamic

mechanistic approach can be beautifully correlated with

pre/post treatment photophysics.

Future Work

• M1 and M2 macrophages
will be treated with
particles containing S-
nitroso-N-acetyl-
penicillamine  +/-
phototherapy and their
morphology analyzed as
M1-like or M2-like using
a narrow neural network
model (Figure 4) Figure 4: Scatterplot of macrophage classification 

model with 92.5% accuracy, with dots representing 
correct classifications. Blue = M1 and Orange = M2

Acknowledgements
We would like to acknowledge the Advancing a Healthier 
Wisconsin Endowment (AHW) Momentum Grant for supporting 
this research

References
1. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours

in neurofibromatosis 1. J Med Genet 2002;39(5):311-4. DOI: 10.1136/jmg.39.5.311.

2. Nichols, R. J.; Haderk, F.; Stahlhut, C.; Schulze, C. J.; Hemmati, G.; Wildes, D.; Tzitzilonis, C.; Mordec, K.;

Marquez, A.; Romero, J.; Hsieh, T.; Zaman, A.; Olivas, V.; McCoach, C.; Blakely, C. M.; Wang, Z.; Kiss, G.;

Koltun, E. S.; Gill, A. L.; Singh, M.; Goldsmith, M. A.; Smith, J. A.; Bivona, T. G. Ras Nucleotide Cycling Underlies

the SHP2 Phosphatase Dependence of Mutant BRAF-, NF1- and Ras-Driven Cancers. Nature Cell

Biology 2018, 20 (9), 1064–1073. DOI:10.1038/s41556-018-0169-1.

3. Puri, A.; Sine, J.; Urban, C.; Charron, H.; Valim, N.; Tata, D.; Schiff, R.; Joshi, A.; Blumenthal, R.; Thayer, D.

Photo Activation of HPPH Encapsulated in"Pocket" Liposomes Triggers Multiple Drug Release and Tumor Cell

Killing in Mouse Breast&nbsp;Cancer Xenografts. International Journal of Nanomedicine 2014, 125.

DOI:10.2147/ijn.s72143.

4. Stringer, C.; Wang, T.; Michaelos, M.; Pachitariu, M. Cellpose: A generalist algorithm for cellular

segmentation 2020. DOI:10.1101/2020.02.02.931238.

5. Pachitariu, M.; Stringer, C. Cellpose 2.0: How to Train Your Own Model. Nature Methods 2022, 19 (12), 1634–

1641. DOI:10.1038/s41592-022-01663-4.


	Slide 1



